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RESUMO - A presença de ruído em imagens hiperespectrais causa degradação e dificulta a eficiência no processamento para a 
classificação da cobertura terrestre. Portanto, a remoção do ruído ou a detecção automática de bandas ruidosas em imagens 
hiperespectrais torna-se um desafio para pesquisas na área de sensoriamento remoto. Para enfrentar esse problema, um modelo 
integrado (SAE-1DCNN) é apresentado nesse estudo, baseado nos algoritmos de Deep Learning conhecidos como: Stacked-
Autoencoders (SAE) e Redes Neurais Convolucionais (CNN) para a seleção e exclusão de bandas ruidosas. O modelo proposto emprega 
as camadas convolucionais para melhorar o desempenho dos Autoencoders focados na discriminação dos dados de treinamento por 
meio da análise da assinatura hiperespectral do pixel. No contexto do SAE-1DCNN, as informações são comprimidas e a informação 
redundante é identificada e removida. Isso é possível dado à eficiência da arquitetura profunda baseada em camadas convolucionais e 
de agrupamento. Os resultados obtidos demonstram a capacidade do modelo em identificar automaticamente bandas ruidosas, 
sugerindo que a nossa abordagem tem potencial e pode representar uma alternativa promissora para a detecção de bandas ruidosas no 
pré-processamento de dados hiperespectrais. 
Palavras-chave: Bandas ruidosas. Seleção de atributos. Redes neurais convolucionais. Stacked-autoencoders. Dados hiperespectrais. 
 
ABSTRACT - The presence of noise on hyperspectral images causes degradation and hinders efficiency of processing for land cover 
classification. In this sense, removing noise or detecting noisy bands automatically on hyperspectral images becomes a challenge for 
research in remote sensing. To cope this problem, an integrated model (SAE-1DCNN) is presented in this study, based on Stacked-
Autoencoders (SAE) and Convolutional Neural Networks (CNN) algorithms for the selection and exclusion of noisy bands. The 
proposed model employs convolutional layers to improve the performance of autoencoders focused on discriminating the training data 
by analyzing the hyperspectral signature of the pixel. Thus, in the SAE-1DCNN model, information can be compressed, and then 
redundant information can be detected and extracted by taking advantage of the efficiency of the deep architecture based on the 
convolutional and pooling layers. Hyperspectral data from the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor were 
used to evaluate the performance of the proposed automatic method based on feature selection. The results showed effectiveness to 
identify noisy bands automatically, suggesting that the proposed methodology was found to be promising and can be an alternative to 
identify noisy bands within the scope of hyperspectral data pre-processing. 
Keywords: Noisy bands. Feature selection. Convolutional neural network.  Stacked-autoencoders. Hyperspectral data. 
 

INTRODUCTION 
The abundant and valuable spectral 

information captured by hyperspectral imaging 
through hundreds of narrow and continuous 
bands from the visible to the near-infrared region 

of the electromagnetic spectrum (0.4 to 2.5 μm), 
allows to recognize and distinguish very similar 
materials and objects on the Earth's surface (Yang 
et., 2018; Paoletti et., 2019; Mei et al., 2019). This 
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detailed spectral description of the Earth’s surface 
has been used in different applications such as: 
land cover mapping (Paoletti et al., 2018; Ishida 
et al., 2018; Laporte-Fauret et al., 2020; Banerjee 
et al., 2020), mineral exploration (Carrino et al., 
2018; Booysen et al., 2020; Jackisch et al., 2019), 
water pollution detection (Cao et al., 2021; Wei 
et al., 2019; Minghelli et al., 2021), among 
others. However, hyperspectral images suffer 
from degradations that can cause disruption 
affecting the performance of further processing. 
One of these degradations is noise caused by 
sensor instability and atmospheric interference, 
such as: Gaussian noise, stripe noise, impulse 
noise, missing lines, and mixed noise (Rasti et 
al., 2018; Zhang et al., 2019). 

Noise identification is decisive before the 
analysis and interpretation of hyperspectral 
images considering future applications (Lu et al., 
2013; Mei et al., 2019). Noisy bands can be 
detected and eliminated using two approaches: 
visual inspection and automatic selection. Visual 
inspection is performed by displaying each band 
on the screen; however, this approach is 
subjective and can lead to different results, even 
discarding useful bands (Jia et al., 2012). The 
automated selection approach consists of applying 
models, algorithms and procedures that allow 
computing parameters to select relevant infor-
mation. Such methods use information contained 
in the original data to identify the noisy bands.  

Noisy bands elimination resembles feature 
selection methods, aimed at identifying the most 
relevant bands from a hyperspectral set, and 
discarding those that are redundant or are not 
useful for the classification. Automated 
approaches for information extraction can be 
divided into two methods: feature selection and 
feature extraction (Serpico et al., 2003).  
According to Ettabaa and Salem (2018), feature 
selection has advantages over feature extraction, 
the main one being that it does not require any 
transformation to be applied to all or most of the 
original data with the risk of losing information 
when applying a transformation. According to 
Venkatesh and Anuradha (2019) and Zebari et al. 
(2020), feature selection methods based on the 
interaction with the learning model can be 
classified into: Filter (based on measurement 
criteria), Wrapper (based on classification 
accuracy metrics), Embedded (based on learning 
algorithms), Hybrid (based on the integration of 
two methods of feature selection) and Ensemble 

(based on the construction of a group of feature 
subsets). 

Hyperspectral denoising techniques have 
evolved substantially to improve the signal/noise 
ratio of hyperspectral data (Rasti et al., 2018). 
One of these techniques is artificial intelligence 
based on its Machine Learning and Deep 
Learning models, which solve the limitation of 
conventional methods and show encouraging 
performance in the preprocessing and processing 
stages (Maffei et al., 2019; Paul et al., 2022). 
These models use features learned exclusively 
from data with the aim of automatically 
discovering an effective feature representation 
for a problem domain, thus avoiding the compli-
cated and hand-crafted feature engineering 
process (Paul and Chaki, 2019; Yang et al., 2018). 
Among the most representative and widely used 
models in scientific works relating hyperspectral 
data are: Convolutional Neural Networks (CNN), 
Autoencoders (AE) or Stacked-Autoencoders 
(SAE). CNNs are supervised models, in which 
the convolutional layer is the basic structural unit 
and allow integrating spectral features with 
spatial contextual information on hyperspectral 
data in a more efficient way for feature extraction 
(Paoletti et al., 2019). The overall success of 
these networks lies mainly in the fact that the 
structure forces the networks to learn hierarchical 
contextual translation-invariant features, which 
are particularly useful for image categorization 
(Maggiori et al., 2016). AE or SAE (various 
stacked AE) are unsupervised symmetric neural 
networks that aim at learning a compressed data 
representation of a high-dimensional feature 
space with minimal information loss (Cheng et 
al., 2017; Audebert et al., 2019) for feature 
selection and, more generally, for dimensionality 
reduction (main application), which is useful for 
hyperspectral image classification, as described 
in Zabalza et al., 2016; Petscharnig et al., 2017; 
Windrim et al., 2019. 

In this context, an integrated pixel-based 
model involving the SAE and CNN models for 
the selection and exclusion of noisy bands is 
introduced in the present study. The core of the 
integrated model (SAE-1DCNN) is an autoencoder 
that is improved by using convolutional layers in 
the encoding and decoding steps. This allows 
improving the training data discrimination 
through the analysis of the pixel’s hyperspectral 
signature, taking advantage of the effectiveness 
of the deep architecture based on the convo-
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lutional and pooling layers. To validate the 
proposed methodology, the results obtained were 
analyzed through the kappa coefficient to verify 
the potential of the integration of AEs and 
convolutional nets. Experiments were performed 
using different hyperspectral data sets: Indian 
Pines University of Pavia and Salinas, widely 

used by the scientific community. These obtained 
results demonstrated effectiveness to detect noisy 
bands, therefore, the proposed methodology is 
considered promising, solid and can be an alter-
native to detect noisy bands in the hyperspectral 
data preprocessing and avoid disturbances in 
subsequent analysis.

MATERIAL AND METHODS 
Study Area and Dataset 

To evaluate the performance of the proposed 
method, two hyperspectral data sets obtained by 
the AVIRIS (Airborne Visible/Infrared Imaging 
Spectrometer) sensor at different locations were 
used.  

The datasets are Indian Pines and Salinas, 
which were obtained by well-known research 
institutions such as: Purdue University, United 
States. Based on the ground truth map, the 
labeled and collected samples for the two 
hyperspectral data sets were divided into training 
and test samples.  

Of the total samples collected, 30% were used 
as test samples and the remaining 70% as training 
samples. 

Indian Pines Experiment 
The Indian Pines data set was captured in NW 

Indiana (Figure 1a). This area is covered by 
mixed agricultural fields with regular and 
irregular geometry regions. The image size is 145 
× 145 pixels and the spatial resolution is 20 m. 
For this scene, 224 spectral bands are available, 
which cover the range of 0.4 to 2.5 μm 
wavelength with an average spectral bandwidth 
of 10 nm. From these bands, 34 are recognized as 
noisy bands due to water absorption and noise. 
The ground truth available in Figure 1b is divided 
into seven classes (Table 1), considering training 
and test samples of each class that were 
distributed throughout the full scene for land 
classification.

 

 
Figure 1 - (a) Hyperspectral image of the Indian Pines dataset. (b) Ground truth classification map of the Indian Pines 
dataset. 
 
Table 1 - Information classes and training-test samples 
for the Indian Pines dataset 

Class Training Test Total 
Vegetation  205 89 294 
Corn-no till 266 127 393 
Corn-min 232 111 343 
Grass/Pasture 101 47 148 
Grass/trees 238 106 344 
Soybeans-no till 315 104 419 
Soybeans-min 448 190 638 

Salinas Experiment 

The second hyperspectral data set was 
gathered over several agricultural fields of the 
Salinas Valley, California (Figure 2a), recording 
224 spectral bands covering the range of 0.4 to 
2.5 μm with 512 x 217 pixels.  

The spatial resolution of this scene is 3.7 m 
per pixel. In this data set, as in the case of the 
Indian Pines data set, due to water vapor 
absorption, 20 noisy bands were recognized. 
Figure 2b shows the ground truth of this scene, 
which was divided into 16 classes of land cover 
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and its training and test samples are presented in 
Table 2. 
Methodology 

The water vapor molecules present in the 
atmosphere strongly absorb the emission of 
electromagnetic radiation, which prevents 
remote sensing in specific spectral regions. Since 

hyperspectral sensors collect data over a wide 
spectral range, including water absorption bands 
in the middle infrared, it is necessary to exclude 
such bands to reduce noise. In this study, noisy 
bands were detected and removed by two 
approaches: visual inspection and automated 
selection.

 

 
Figure 2 - (a) Hyperspectral image of the Salinas dataset. (b) Ground truth classification map of the Salinas dataset 

 
Table 2 - Information classes and training-test samples for the Salinas dataset 

Class Training Test Total 

Broccoli green weeds 1 1401 608 2009 

Broccoli green weeds 2 2596 1130 3726 

Fallow 1358 618 1976 

Fallow rough plow  963 431 1394 

Fallow smooth  1867 811 2678 

Stubble  2754 1205 3959 

Celery  2447 1132 3579 

Grapes untrained 7963 3308 11271 

Soil vinyard develop  4373 1830 6203 

Corn senesced green weeds  2275 1003 3278 

Lettuce_romaine_4wk  740 328 1068 

Lettuce_romaine_5wk  1355 572 1927 

Lettuce_romaine_6wk  655 261 916 

Lettuce_romaine_7wk  746 324 1070 

Vinyard untrained  5127 2141 7268 

Vinyard vertical trellis  1270 537 1807 
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Exclusion of noisy bands by visual inspection 
The first approach is based on visual 

inspection (traditional and subjective approach). 
For this purpose, each band of each hyperspectral 
set was displayed on the screen where its noise 
was visually evaluated, considering the 
exaggerated roughness produced by noise. To 
illustrate the effect of noise, a noisy band with 
water vapor interference and band without noise 
from the Indian Pines hyperspectral image of the 
AVIRIS sensor are displayed in figure 3. This is 
a simple method but is also affected by the user’s 
experience, which can lead to different results. 
To perform this first traditional approach, all the 
bands composed of a hyperspectral data set were 
used, i.e., the AVIRIS sensor has 224 bands 
between noisy and noiseless bands. This result 
was used as reference to evaluate the second 
method. 

Exclusion of noisy bands by automated selection 
The second approach considers the SAE-

1DCNN feature selection model. This proposed 
feature selection method is based on an 
integrated deep learning model that includes an 
SAE and convolutional networks in the encoding 
and decoding phases. The idea is to identify the 
best set of noisy variables for further 
classification. Therefore, the selection is guided 
by training samples for a restricted set of classes. 
Thus, the model is trained using training samples 
(supervised training) and then the influence of 
each band is analyzed, which allows identifying 
noisy bands. The success of the detection of 
noisy variables was evaluated based on the kappa 
coefficient of a posterior classification with the 
remaining bands. For this second approach, the 
SAE-1DCNN proposed model for feature 
selection was applied on a reduced set of bands, 
in this case, 23 bands and 32 bands were used for 
the Salinas and Indian Pines image, respectively. 
It should be mentioned that this reduced band set 
is composed of noisy and noiseless bands.

 

 
Figure 3 - Visualization of bands from the Indian Pines hyperspectral image (a) noisy band (band 103 = 1352,68 nm), 
(b) band without noise (band 120 = 1620,98 nm) 

 
SAE-1DCNN model 

Two different deep learning algorithms are 
used in the proposed SAE-1DCNN model. The 
first builds the base structure of the SAE-based 
system and the second is based on the insertion 
of CNNs in the encoding and decoding stages to 
improve the performance of this model.  

In an autoencoder, during the encoding stage, 
an input vector 𝑥𝑥 ∈ 𝑅𝑅𝑁𝑁 is mapped to a compact 
hidden representation, h, through a nonlinear 

activation function f. If the network has a single 
hidden layer, then h will be expressed by 
equation 1. Here, h, stands for the computed 
feature, f is a non-linear activation function that 
is applied to the weighted sum of the original data 
(𝑥𝑥) using a set of weights (W). For the decoding 
stage, the compact representation h is used to 
compute the input vector as output 𝑥𝑥′ using a 
nonlinear activation function, as in the previous 
stage, by equation 2. 
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(1) 

 

 
(2) 

where, 𝑊𝑊 is the weight matrix to be estimated 
at the training stage (learned), 𝑊𝑊′ is the weight 
matrix of the reconstruction layer, 𝑏𝑏 and 𝑏𝑏′ are 
the bias vector for each stage and 𝑓𝑓 is a non-
linear activation function. 

According to Ma et al. (2019) and LeCun et 
al. (2015), a CNN is a deep learning model 
designed to process images using the regular 
organization of the pixels and, it is composed of 
three different layers: the convolutional layer, the 

 

pooling layer, and the full connected layer. In this 
model the input vector is convolved with a set of 
𝐾𝐾 kernels with the weight matrices 𝑊𝑊 =
{𝑊𝑊1,𝑊𝑊2, . . . ,𝑊𝑊𝐾𝐾} and biases are added 𝛾𝛾 =
{𝑏𝑏1, 𝑏𝑏2, . . . , 𝑏𝑏𝐾𝐾}, each generating a new feature 
map 𝑋𝑋𝑘𝑘, according to equation 1. The output of 
each convolution is modulated applying a non-
linear transform 𝑓𝑓(∙), and the same process is 
repeated for every convolutional layer, according 
to Equation 3. Figure 4 shows the structure of the 
proposed model based on the two stages 
mentioned above. 

 
(3) 

 

 
Figure 4 - Structure of the SAE-1DCNN model. 

 

The input of the autoencoder is the original 
data set, the digital values in all available spectral 
bands. In the hidden layers, the input variables 
are combined, and the output is the result of the 
weighted sum. For this study, the autoencoder 
approach is applied not to detect spatial features, 
but to compute spectral features along the 
spectrum. Instead of using a moving window that 
slices along the image we propose the use of a 
one-dimensional window that slices along the 
bands space for each pixel. So, local spectral 
patterns are detected, and these patterns can be 
used to compute features that can help 
summarize the spectral signature of each pixel. 
To compute the output, several one-dimensional 
convolutional nets are applied. The purpose is to 
analyze the existing correlation between 
neighboring bands (spectral analysis) instead of 
the spatial correlation between neighboring 

pixels, as normally considered by convolutional 
networks. 

This is possible considering that the set of 
hyperspectral measurements of a pixel resembles 
a continuous series, its spectral signature, which 
is characterized by local spectral variations that 
can be detected by a CNN. In such series, spectral 
signature, adjacent spectral bands are highly 
correlated and local variations are caused by the 
presence of specific elements, like water, 
chlorophyl or iron, for example, which introduce 
variations that are relative smooth. So, the 
complete spectral set of digital values of one 
pixel can also be understood as a one-
dimensional function, in discrete form. 

As the central idea is to replace the weighted 
sum of the spectral data by a convolutional net, a 
new value is computed from the input data 
applying the convolution concept to the spectral 
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series. This is equivalent to say that the spectral 
series is “filtered” using several 1D linear filters 
to compute the output values. The use of one-
dimensional filters has the advantage that they 
are faster to compute than the 2D filters used in 
traditional convolutional layers. This 
significantly reduces the processing time. To 
improve the shape of the spectral signatures, 

convolutional networks are used, which describe 
the input vector with a reduced set of features, 
computed from spectral neighboring bands. 

Figure 5 describes the architecture of the 
proposed SAE for the encoding stage (Indian 
Pines data set), as the SAE model is symmetric, 
the decoding stage is proportional to the 
encoding stage.

 

 
Figure 5 - Proposed SAE Architecture-Encoding phase 

 
The size of the input layer is equal to the 

number of available bands. For example, 32 
bands for the Indian Pines data set (22 clear 
bands and 10 noisy bands). In each convolutional 
step, the input data is filtered using 1x3 linear 
filters, and the ReLU activation function is used 
to compute the output.  

Then, the result is down sampled with a 1x3 
kernel and stored in a pooling layer. In the first 
AE, it is used 256 filters. The second uses 128 
and the last one 64.  

The output of this net is then used as input of 
a conventional (dense) neural net to compute a 
reduced number of neurons in the latent vector. 
The size of the latent vector was set equal to the 
number of desired features. For the Indian Pines 
scene, the latent vector size was seven. 

The SAE-1DCNN network is first used to 
extract relevant features from the samples and a 
reduced representation of the original data set can 
be found in the center of the net. So, for the next 
step, the weights that are obtained in this step are 
used as start point for the next step: fine-tuning. 

The supervised fine-tuning is based on the 
concept of transfer learning (Bengio, 2012 and 
Donahue et al., 2014) and consists of adjusting 

the weights for a desired purpose. In our case, the 
aim is to identify noisy bands and subsequently 
for the classification of the samples in the desired 
classes. The Fine-tuning step uses two fully 
connected layers.  

The output from the previous encoding stage 
is used as input in the first fully connected layer 
and passed to the second fully connected layer, 
with less neurons, that computes the final output 
using a conventional, dense, layer and the logistic 
regression based on the Softmax activation 
function (minimizes classification errors by 
adjusting the model parameters of a pretrained 
network), as mentioned Xing et al., 2016, 
Nogueira et al., 2017.  

Figure 6 displays the mechanism of the 
proposed model based on the two stages 
mentioned above. In the following subsections it 
is described the principles of the use of stacked 
autoencoders and fine tuning and the refinement 
of this concept by the introduction of the 
convolutional layers. 

As the proposed model is trained to classify 
pixels according to their digital values in a series 
of hyperspectral bands, the number of neurons in 
the output layer is equal to the number of classes. 
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Table 3 details the parameters of the SAE-
1DCNN model proposed for the two 
hyperspectral images used in this work. This 

table shows the parameters for the pretraining 
performed in the first autoencoder stage as well 
as for the supervised fine-tuning stage.

 

 
Figure 6 - Global Training Mechanism of the proposed model (SAE-1DCNN) 

 
Table 3 - Information of the architecture of the SAE-1DCNN model for hyperspectral dataset. 

SAE-1DCNN proposed method 

Hyperspectral 
dataset 

Parameters 
Pretraining (encoder) Fine-tuning 

Parameters stage Filters Parameters 
stage 

Full Connected 
Neurons 

Indian Pines 
Epoch=50; 

Optimizer=Adam; 
Batch size=32 

256 Epoch=1500; 
Optimizer=Adam; 
Learn rate=0.001 

3000 
100 

7 
128 
64 

Salinas 
Epoch=300; 

Optimizer=Adam; 
Batch size=32 

256 Epoch=300; 
Optimizer=Adam; 
Learn rate=0.001 

300 
300 
16 

128 
64 

 

Feature selection steps 
To evaluate the proposed method (SAE-

1DCNN), it was applied to detect noisy bands 
within an AVIRIS data set. Two image sets were 
used in the experiments: Salinas and Indian Pines 
images. 

Training samples of different classes were 
selected in each image, including all bands, and 
fed into the SAE-1DCNN model.  In the hidden 
layers, a summarized representation of the 
spectral variation of the pixels was computed, 
which enables reconstructing the original data. 
The summarized representation was used to 
perform image classification, and the accuracy of 
this result assessed through the kappa used 
(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘0). This result was used as reference to 
measure the loss or gain obtained when a certain 
band is omitted. The coefficients of the net were 
frozen, and the model used to classify the same 
samples, but in each experiment one band was 
excluded and replaced by a constant value. This 
was repeated for each spectral band.  

The kappa coefficient was computed for each 
experiment. Next, the experiments were ranked 
according to the kappa coefficients (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 ; 𝑖𝑖 = 
1, 2, 3,…, number of bands) and the one with the 
maximal kappa coefficient identified 
(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚). In the experiments, one can find 
kappa values above the first reference kappa 
(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘0). Therefore, the reference was adjusted 
using the maximal kappa computed in the series 
of experiments. The average between the 
maximal kappa coefficient (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and the 
reference kappa (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘0) was computed to 
obtain an adjusted reference kappa (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟) 
as shown in Equation 4. Figure 7 shows the pre-
processing methodology by the SAE-1DCNN 
model for noisy bands detection. 

The difference between the adjusted reference 
kappa (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟) and the kappa coefficient of 
each substitution (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖), shown in Equation 5, 
was used to estimate the contribution of each 
band. The computed values enable ranking the 
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Figure 7 - Methodology for detection of noisy bands step by SAE-1DCNN 

 
experiments from the highest value (high quality) 
to the lowest (worst quality). Lower values are 
obtained when a useful band (significant 
information) is omitted. On the other side, higher 
values show that the omitted band does not 
contribute significantly to the classification. 
Fixing the number of desired bands or applying a 
threshold enables detecting the bands with less 
useful information.  

As the noisy bands are composed of random 
pixel values, they are related to high values in 
equation 5. In the study, a threshold was empiri-
cally chosen. If the absolute difference lies below 

the threshold, then the band can be discarded, as 
the accuracy of the classification is reduced. 

 
(4) 

 

 
(5) 

Where,  
𝑖𝑖: omitted band; 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟: adjusted reference 

kappa; 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚: maximal kappa obtained in 
the experiments omitting one band; 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘0: kappa 
coefficient of the experiment using all bands.

RESULTS AND DISCUSSION 
To detect noisy bands, the first approach was 

visual inspection of each band. Then, in a second 
attempt, the SAE-1DCNN model was used to 
perform the same task.  
Noisy Bands Detection 

Noisy bands were visually identified and 

excluded. For this purpose, each band was 
visualized on the computer screen (detailed in 
section 2.2.1) and the number of noisy bands was 
visually estimated. The result of this step 
depends on the experience of the analyst and 
different results may be obtained by different 
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analysts, which is a critic to this method. 
Nevertheless, it was used as a first approach in 
the experiments. In a second step, tests were also 
performed based on the proposed SAE-1DCNN 

band selection approach. 
The bands that were excluded for each 

hyperspectral image through visual identification 
are presented in Table 2.

 
Table 4 - Noisy bands removed by visual identification 

Hyperspectral data set Total bands Noisy bands Used 

Indian Pines 32 10 22 

Salinas  23 5 18 
 

The proposed model was evaluated using 
AVIRIS hyperspectral images of Indian Pines 
and Salinas. The SAE-1DCNN band selection 
method was applied to reduced datasets, with and 
without noisy bands. For the tests performed in 
this section (using the SAE-1DCNN model), 18 
bands without noise and 5 noisy bands were used 
in the Salinas experiment. On the other hand, 22 
clear bands and 10 noisy bands were used when 
dealing with the Indian Pines image. This means 
that 23 bands were used for the Salinas image and 
32 bands for the Indian Pines image. For the 
Salinas image, the noisy bands used were: 108, 
111, 159, 160, 162; while for the Indian Pines 
image: 1, 103, 104, 107, 109, 153, 155, 157, 161, 
163. The noisy bands for the two evaluated 
scenes were randomly chosen, based on the 
visual analysis, and belong to the red regions and 
infrared of the electromagnetic spectrum.  

In the next step, the experiment was repeated 
replacing the information of one band by a 
constant value, which means that this band has 
no relevant information. Then, the quality of the 
thematic map of each experiment was analyzed 
using kappa coefficient. The thresholds of 10% 
for the Salinas data set and 3% for the Indian 

Pines data set were used to identify the bands that 
do not contribute significantly to the solution. 
The adjusted reference kappa (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟) com-
puted and used for the Salinas image was 88% 
while for the Indian Pines image it was 76%. 

The evaluation and identification of noisy 
bands was carried out based on the difference 
between the adjusted reference kappa 
(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟) and the kappa coefficient of each 
experiment. These differences were compared 
through the threshold established for each image. 
Thus, if the difference between these two kappa 
values is less than the set threshold, it is identi-
fied as a noisy band, as shown in Tables 5, 6. 

Tables 5 and 6 show the results obtained in the 
images of Salinas and Indian Pines for the 
identification of noisy bands. However, 10 and 
14 results for Salinas and Indian Pines, 
respectively, were placed in those tables as a 
sample of the totality of results obtained in this 
work. Based on the results obtained in each 
scene, all the noisy bands used in this section 
were identified, therefore, they can be eliminated 
since they do not contribute to improve the 
classification.

 
Table 5 - Identification of noisy bands removed by SAE-1DCNN model for Salinas data set. 

Model Number of bands 𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒓𝒓𝒓𝒓𝒓𝒓 𝑫𝑫𝑫𝑫𝑫𝑫𝒊𝒊 

SAE-1DCNN 

18 bands 87.55  

23 bands 

18 without noise + 5 noisy bands 87.40  
108* 89.31 1.31 
111* 89.30 1.30 
159* 89.31 1.31 
160* 89.32 1.32 
162* 89.32 1.32 
7** 58.61 29.39 
11** 69.54 18.46 
17** 25.42 62.58 
37** 31.33 56.67 
153* 45.30 42.70 

        * noisy bands, ** bands without noise  
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Table 6 - Identification of noisy bands removed by SAE-1DCNN model for Indian Pines data set. 
Model Number of bands 𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒓𝒓𝒓𝒓𝒓𝒓 𝑫𝑫𝑫𝑫𝑫𝑫𝒊𝒊 

SAE-1DCNN 

22 bands 76.04  

32 bands 

22 without noise + 10 noisy bands 77.31  
1* 77.02 1.02 

103* 77.02 1.02 
104* 78.49 2.49 
107* 78.40 2.40 
109* 78.45 2.45 
153* 78.17 2.17 
155* 78.35 2.35 
157* 78.40 2.40 
161* 78.49 2.49 
163* 78.44 2.44 
23** 23.91 52.09 
27** 23.10 52.90 

169** 67.75 8.25 
171** 69.28 6.72 

       * noisy bands, ** bands without noise 
CONCLUSIONS 

In this paper, we introduced the SAE-1DCNN 
model as feature selection method to detect noisy 
bands on hyperspectral images. This model inte-
grates an unsupervised approach based on SAE 
and performs supervised training using CNNs 
and fine-tuning by logistic regression. The proposed 
model was applied using two hyperspectral 
images of the AVIRIS sensor that cover mixed 
agricultural areas, which allowed evaluating its 
performance and determining that it is a valid 
option to perform feature selection for noisy band 
detection purposes. 

The SAE-1DCNN proposed model enables 
detecting the most significant input variables, in 
that sense, to identify the bands that affect more 
significantly the quality of the result, and the less 
significant, those that do not change the result. 

The extraction of noisy bands by visual 
inspection is subjective because it depends on the 
criteria of each analyst and useful bands can be 
discarded, while the automatic selection 
approach selects relevant information through 
parameters, models, algorithms and procedures 
using information contained in the original data. 

The proposed automatic method can detect 
noisy bands and cancel them to avoid inconve-
nience in the classification step. This is useful 
because it can be used to bypass band selection 
based on visual analysis of each spectral band.  

The results obtained with the SAE-1DCNN 
model showed effectiveness in identifying noisy 
bands, thus encouraging to investigate its 
potential use to perform the pre-processing steps 
without relying on visual identification.
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