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RESUMO - As estimativas dos estoques de biomassa vegetal em pastagens utilizando técnicas de sensoriamento remoto, apesar de 
serem amplamente utilizadas ultimamente, ainda são incertas devido ao padrão tridimensional e desigual de crescimento da vegetação. 
Foi definida uma metodologia para estimar os estoques de biomassa no semiárido de Pernambuco, Brasil, utilizando uma câmera RGB 
de alta definição acoplada a um drone. Os sobrevoos foram realizados em áreas de floresta tropical seca densa e aberta e pastagens, nas 
estações seca e chuvosa. A biomassa medida em campo foi relacionada a nove índices de vegetação do espectro visível por meio de 
regressão linear múltipla. Os coeficientes de determinação variaram entre 0,73 e 0,82. Os modelos mostraram-se uma forma viável de 
estimar a biomassa, considerando a amplitude espacial e temporal do estudo, as características da vegetação e os tipos de cobertura do 
solo avaliados. Sensores RGB são promissores para estimar biomassa em regiões semiáridas, especialmente integrados a índices de 
vegetação. 
Palavras-chave: Geotecnologias. Espectro visível. Índices de vegetação. Pasto. Floresta seca. 
 
ABSTRACT - Remote sensing techniques are currently widely used in environmental analysis due to the ability to collect accurate 
data in a cheaper and easier way than conventional techniques. However, estimates of vegetation biomass stocks in rangelands using 
remote sensing techniques are still uncertain due to the tridimensional and uneven growth pattern of the vegetation. A methodology 
was defined to estimate biomass stocks in different land cover types in the semi-arid region of Pernambuco state, Brazil, using a high 
definition RGB camera coupled to a drone. Flyovers 30 m above ground level were performed in three field experiments, in areas of 
dense and open tropical dry forest and pastures, during the dry and rainy seasons. Biomass measured in field was related to nine visible 
spectrum vegetation indices as independent variables, using multiple linear regression. The determination coefficients ranged between 
0.73 and 0.82. The models proved to be a feasible way to estimate the biomass, considering the spatial and temporal amplitude of the 
study, the vegetation characteristics and the types of soil cover evaluated, which could be improved with the addition of more sampling 
points. We conclude that RGB sensors are promising to estimate biomass in semiarid regions, especially integrated with vegetation 
indices. 
Keywords: Geotechnologies. Visible spectrum. Vegetation índices. Pasture. Dry forest. 
 

INTRODUCTION 
Remote sensing techniques have become conso-

lidated as versatile tools, and their application in 
several branches of science is currently 
becoming more widespread. Remote sensing has 
enabled a better understanding of the dynamics 
of environments due to the possibility to collect 
accurate and robust data, with low cost, covering 
a large area within a short temporal scale, 
combined with statistical models (Gaida et al., 

2020; McRoberts & Tomppo, 2007). In envi-
ronmental studies, their positive contribution in 
monitoring and analysis of the landscape is unde-
niable, since they facilitate the spatial-temporal 
visualization of ecological variables important 
for sustainable ecosystem management (Silva, 
1998, Silva et al., 2018). 

Remote sensing techniques have traditionally 
been applied using airplanes and satellites, but 
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the use of unmanned aerial vehicles (UAV) has 
been increasing in the last decade (Harkel et al., 
2020). They have as advantages, compared to 
airplanes and satellites, the ability to capture 
images in high spatial resolution, less propense 
for sampling errors from atmospheric inter-
ference, higher flexibility in relation to collection 
period, and simpler operation (Pádua et al., 2017; 
Whitehead et al., 2014; Toth & Józków, 2016). 

Vegetation is one of the most complex targets 
analyzed by remote sensing. Therefore, the use 
of spectral indexes of vegetation has gained space 
to evaluate the dynamics of plant growth and 
ground cover (Ponzoni et al., 2010; Epiphanio et 
al., 1996). Vegetation indexes integrate radio-
metric measurements composed of values of 
specific bands of the spectrum, minimizing 
atmospheric effects Jensen et al., 2011).  

The use of RGB cameras as an alternative to 
infrared in vegetation indices makes research 
feasible, especially in contexts where the use of 
high-resolution multispectral or hyperspectral 
cameras is financially unviable.  

The reduced cost and ease of operation of 
RGB cameras simplify the capture and analysis 

process. In various situations, these sensors can 
effectively replace indices that require infrared 
data, particularly in areas with uniform vege-
tation, where spectral differences between visible 
bands can provide reliable estimates of plant 
health and structure, in some cases satisfactorily 
replacing indices that need infrared spectrum 
data (Marcial-Pablo et al., 2019).  

This more accessible and practical approach 
has expanded opportunities for environmental 
monitoring, especially in sustainable management 
and conservation initiatives for green areas, where 
data frequency and accessibility are preferable to 
high-cost and complex operational systems. 

The objective of this study is to define a 
methodology for estimating biomass stocks using 
drones in areas with different types of land cover 
and use in the Caatinga biome of the state of 
Pernambuco. Specifically, it aims to acquire spectral 
data for the biome, creating a database that will 
support future sustainable management plans.  

Additionally, the work intends to develop 
multiple linear regression equations to estimate 
biomass in different types of land use and cover 
in the region. 

METHODOLOGY 
Study area and biomass determination 

Nine sites of the network of plots for long-
term ecological studies in Northeastern Brazil 
(PERENE), a regional project led by the 
National Observatory of Water and Carbon 
Dynamics in the Caatinga Biome, funded by the 

Brazilian Ministry of Science and Tech-
nology, were selected to collect vegetation field 
data.  

The sites are located at different munici-
palities in the semiarid region of Pernambuco 
state, northeast of the Brazil (Figure 1). 

Figure 1 - Municipalities where the data collection sites are located in Pernambuco state, Brazil. 
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Three plots were selected in each of the ten 
data collection sites, corresponding to the most 
important land-use and cover vegetation in the 
region:  

1) Dense Caatinga (DC), deciduous forest 
with a high density of tall shrubs and trees, 
forming a heterogeneous but closed canopy, with 
little areas of exposed soil in an aerial view 
(Figure 2(a)); 2) Open Caatinga (OC), the same 

vegetation formation as DC but with lower 
density of tall shrubs and trees and opener 
canopy, with points of exposed soil in aerial 
images, generally corresponding to intermediate 
stages of forest regeneration (Figure 2(b)), and 3) 
Pasture fields (P), composed predominantly of 
herbaceous planted or native species with very 
low density or absence of tall shrubs and trees 
(Figure 2(c)). 

Figure 2 - Aerial images of areas of Dense Caatinga (A), Open Caatinga (B) and Pasture (C) in the semiarid site of 
Salgueiro municipality, in the Brazilian northeast region. 

 
Each plot had a 20 m x 20 m area, surrounded 

by a border of at least 5 m without anthropic 
disturbances and away from floodplains and rock 
outcrops. Four 1 m² subplots were delimited in 
each plot corner.  

Plant biomass was determined in each plot, 
measuring the stem diameter at breast height (1.3 
m from the ground) of each tall shrub or tree in 

the plot and using specific alometric equations to 
calculate the biomass based on the diameter 
(Sampaio & Silva, 2005, Silva & Sampaio, 2008, 
Silva, & Cruz, 2018). 

and adding the biomass of herbs and small 
plants determined by direct harvesting and 
weighing in the four corner subplots, and 
extrapolating to the plot area. 

AERIAL DATA COLLECTION ROUTINE 
Drone flight 

A Phantom 4 Pro quadcopter drone (DJI, 
2016), equipped with a high-definition 20-
megapixel camera, capable of capturing in 4K 
and image size of 5472×3078 pixels with a 
mechanical shutter, coupled with a wide-angle 
lens optimized with f/2.8 20 was used to obtain 
images from the plots.  

The overflights always took place at 30 m 
height, to assure the total imaging of the plot, and 
were carried out on sunny days and always from 
10 am to 2 pm, to minimize possible interference 
of the amount of incident light on the image area 
at the time of flight. The images were obtained 
immediately prior to the biomass determination. 
Information processing of spectral analysis 

The images collected in the field were 
processed using the Esri ArcGIS@ software, 
initially cropping the area of interest in the 
image, and extracting the average values of the 
bands of the visible spectrum (green, red, and 
blue) by the extension module Zonal Statistic as 

table. Once the spectral bands were separated, 
the values for each band were used in twelve 
vegetation indices of the visible spectrum (RGB) 
already described in the literature (Table 1) as 
estimators of variables associated with plant 
growth. 
Analytic statistical method  

Two different methods to categorize the land 
cover were used. In Method 1 the three different 
land covers (Dense Caatinga, Open Caatinga, 
and Pasture) were considered. In Method 2 only 
two groups were considered, the two types of 
Caatinga being considered as a single land cover 
group, and Pastures considered as the second 
group. For each of the two methods, multiple 
linear regression analyses were performed 
considering the total field biomass as the 
dependent response variable and the values of the 
vegetation indices as independent explanatory 
variables together with the land covers as 
categorical independent variables (dummy 
variables).  
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Table 1 - Vegetation indices used as categoric variables to estimate biomass 
Indices Acronym Equation Authors 

Visible Atmospherically Resistant Index VARI (Rg−Rr)/(Rg+Rr−Rb) Gitelson et al. (2002) 
Green Leaf Index GLI (2*Rg−Rr−RrRr−RRbRg+Rr+Rb) Louhaichi et al. (2001) 
Normalized Difference Green NGRDI (Rg−Rr)/(Rg+Rr) Tucker (1979) 
Coloration Index CI (Rr−Rb)/Rr Escafadal et al. (1991) 
Intensity I (1/30.5)*(Rr+Rg+Rb) Escafadal et al. (1991) 
Shape Index IF (2*Rr−Rg−g−Rr−Rg−Rb) Escafadal et al. (1991) 
Red-Green Ratio RGR Rr/Rg Gamon et al. (1999) 
Triangular Greenness Index TGI (Rg-0.39)*(Rr-0,61)*Rb Hunt et al. (2011) 
Normalized Pigment Chlorophyll Ratio Index NCPI (Rr-Rb)/(Rr+Rb) Peñuelas et al. (1993) 
Simple Ratio Red/Blue Iron Oxide IO Rr/Rb Hewson et al. (2001) 
Green Cromatic Coordinate GCC Rg/(Rr+Rg+Rb) Gillespie et al. (1987) 
Red Green Blue Vegetation Index RGBVI (Rg*Rg)–(Rr*Rb)/(Rg*Rg)+(Rr*Rb) Bendig et al. (2015) 

The stepwise method was applied, via Akaike 
Information Criterion – AIC (Akaike, 1974), 
combining the backward and forward proce-
dures, to identify the most significant subset of 
predictors and to reject those that were not 
significant, assuming the role of a model quality 
evaluator and estimating the loss of information. 
In addition, it was verified whether the residues 
followed a normal distribution using the Shapiro 

& Wilk test (1965). The linear forms of 
heteroscedasticity were detected using the 
Breusch Pagan (1979) [33] chi-square variance 
test. Multiple and adjusted R² values were also 
included in the analysis. The statistical software 
R (R Core Team, 2013) was used in the 
calculations. 

A general method flowchart of the procedures 
applied for this study are presented in figure 3. 

 
Figure 3 - Routine applied for field activities and information processing. 

RESULTS 
The biomass stocks directly sampled in the 

field ranged from 11.89 to 39.40 Mg ha-1 for 
Dense Caatinga, 2.34 to 36.04 Mg ha-1 for Open 
Caatinga and 0.56 to 6.99 Mg ha-1 for Pasture. 
These values are within the range reported for 
these types of land cover in the Caatinga (Araújo-
Filho, 2013). Overall, the biomass stocks 
estimated through the drone images had ranges 
similar to those determined in the field: 9.94 to 

36.54 Mg ha-1 for Dense Caatinga, 0.85 to 20.57 
Mg ha-1 for Open Caatinga and 0.51 to 7.60 Mg 
ha-1 for Pastures. Model 1, which included the 
three land cover types as categorical variables, 
reached a multiple R2 of 0.7342 and an adjusted 
R2 of 0.6738 (F-statistic, 12.15; p value, 1.0 e-
09). 

The results of the function and their respective 
coefficients are shown in Table 2. The use of 

https://www.sciencedirect.com/science/article/pii/S003442571830107X#bb0100
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RGB vegetation indices combined in a regression 
equation showed high accuracy in predicting the 
biomass stocks in the vegetation in the Brazilian 

semiarid region. 
Equations for each type of land cover were 

developed based on the values listed in Table 3. 
 

Table 2 - Coefficients of multiple linear regression of Model 1. 
  Estimates Standard error T valor Pr (>|t|) 

(Intercept) 5.037e+03 2.363e+03 2.132 0.038630 * 
Dense Caatinga  1.607e+01 2.996e+00 5.365 2.86e-06 *** 

Pasture -1.099e+01 3.053e+00 -3.600 0.000803 *** 
VARI -1.169e+03 5.793e+03 -2.018 0.049668 * 

NGRDI 1.153e+04 5.740e+03 2.008 0.050799 
CI 6.893e+02 3.685e+02 1.871 0.068060 
I 2.841e-05 1.758e-05 1.616 0.113231 

RGR 7.883e+02 5.080e+02 1.552 0.127847 
NCPI 2.447e+03 1.227e+03 1.994 0.052356 

RGBVI -1.649e-04 5.656e-05 -2.915 0.005582 ** 
GCC -1.742e+04 8.484e+03 -2.053 0.046010 * 

Statistical significance codes: 0’ ***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘  ‘ 1 
VARI - Visible atmospherically resistant index; NGRDI - Normalized Difference Green; CI - Coloration Index; I - 
Intensity; RGR - Red-Green Ratio. NCPI - Normalized Pigment Chlorophyll Ratio Index; RGBVI - Red Green Blue 
Vegetation Index; GCC - Green Cromatic Coordinate 

 
Table 3 - Individual equations for each type of cover and land use in Model 1 

 EQUATIONS 

Dense 
Caatinga 

BDC=5.037e+03+1.607e+01-
1.169e+03*VARI+1,153e+04*NGRDI+6.893e+02*CI+2.841e-
05*I+7.883e+02*RGR+2.447e+03*NCPI-1.649e-04*RGBVI-1.742e+04*GCC 

Open 
Caatinga 

BOC=5.037e+03-1.169e+03*VARI+1,153e+04*NGRDI+6.893e+02*CI+2.841e-
05*I+7.883e+02*RGR+2.447e+03*NCPI-1.649e-04*RGBVI-1.742e+04*GCC 

Pasture BP=5.037e+03-1.099e+01-1.169e+03*VARI+1,153e+04*NGRDI+6.893e+02*CI+2.841e-
05*I+7.883e+02*RGR+2.447e+03*NCPI-1.649e-04*RGBVI-1.742e+04*GCC 

BDC = biomass of Dense Caatinga; BOC= biomass of Open Caatinga; BP= Biomass of Pasture. The description of the 
independent variables, corresponding to vegetation indices, are in Table 1 
 

The Shapiro-Wilk normality test had a value 
of 0.9707 and a p-value of 0.1979, indicating the 
acceptance of the hypothesis of normality of 
errors. In the analysis of variance, the value of 
the Breusch Pagan test (7.7431) and p-value 

(0.6539) indicated that the homogeneity of 
variance for the residuals was not violated. 
Therefore, the model followed a normal 
distribution, most points close to the identity line 
(Figure 4). 

 
Figure 4 - Residuals of model 1.

In the second Model, considering only two 
land covers (Caatinga and Pasture), the biomass 
was estimated using a lower number of 

explanatory and categorical variables than in 
Model 1. Merging the open and dense Caatinga 
into a single land cover group (Caatinga) resulted 



532  São Paulo, UNESP, Geociências, v. 43, n. 4, p. 527 - 536, 2024 

in a better fitted equation, reaching an R² 
multiple of 0.8521 and an adjusted R² of 0.8235 
(F-statistic, 29.77; p value, 1.5 e-11). The 
coefficients are listed in Table 4. 

Considering Caatinga as a single land cover 
reduced the noise in the prediction model, 
represented by a higher adjusted R2 in Model 2 
than in Model 1. Merging Dense and Open 
Caatinga as a unique land cover type also 

resulted in an equation to estimate the biomass 
stock with less vegetation indices than the 
equation developed in Method 1. From this 
information, it was possible to describe the 
individual equations for each type of land cover 
(Table 5). The Shapiro Wilk test validated the 
hypothesis of residue normality, with a value of 
0.98241435 and p-value of 0.8011. The residual 
chart illustrates this statement (Figure 5). 

 

Table 4- Coefficients of multiple linear regression of Model 2. 
 Estimatives Standard error T valor Pr (>|t|) 

(Intercept) 6.844e+02 2.569e+02 2.664 0.0121 * 
Pasture -2.751e+01 2.462e+00 -11.175 2.12e-12*** 
NGRDI 9.135e+02 3.723e+02 2.453 0.0200 * 

I 2.655e-05 1.487e-05 1.786 0.0839 * 
NCPI 4.084e+02 1.626e+02 2.512 0.0174 * 

RGBVI -9.595e-05 5.187e-05 -1.850 0.0739 * 
GCC -1.956e+03 7.696e+02 -2.541 0.0163 * 

          Statistical significance codes: 0’ ***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  
 

Table 5 - Individual equations for each type of cover and land use in Model 2. 
 EQUATIONS 

Caatinga Bca = 6.844e+02 + 9.135e+02*NGRDI + 2.655e-05*I + 4.084e+02*NCPI -9.595e-05 
*RGBVI -1.956e+03*GCC  

Pasture Bpa = 6.844e+02 - 2.751e+01 + 9.135e+02*NGRDI + 2.655e-05*I + 4.084e+02*NCPI -
9.595e-05 *RGBVI -1.956e+03*GCC 

          BCa= Caatinga; PA= Pasture ; Bdc= Biomass of dense caatinga ; Bpa= Biomass of pasture. 
 

 
Figure 5 - Residuals of model 2. 

However, the variance test showed a violation 
of the residuals homogeneity considering the 
5% significance level (BP = 17.451 and p-value 
= 0.007762). This implies that the number of 
samples used to build the model needs to be 
increased, either in terms of spatial and temporal 
scale, to achieve a better estimate of the biomass 
stocks in the region. The violation of 
homogeneity can be explained by a high 

percentage of bare soil in the open caatinga areas, 
which caused differences in the reflectance 
pattern and increased diffuse radiation from the 
soil, causing confusion and noise in the 
reflectance emitted by the vegetation. Based on 
the violation statistical principle we conclude 
that Model 1 should be adopted to estimate 
aboveground vegetation biomass stocks in the 
Caatinga. 
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DISCUSSION 
Dry forests biomass stock estimations using 

remote sensing are scarce worldwide, and 
inexistent for some regions, except for 
classifications carried out to cover large areas, at 
the regional, national or continental scales 
(Kumar & Mutanga, 2017; Smith et al., 2019). 

The values estimated using UAV images in 
our study were similar to those reported by 
Araújo-Filho (2013) and by Nascimento (2019), 
who used Landsat 8 images and vegetation 
indices based in infrared reflectance to estimate 
the biomass of Caatinga areas and the same 
vegetation categories: 32.60 ± 9.3, 11.45 ± 9.63 
and 4.18 ± 2.23 Mg ha-1, respectively, for Dense 
Caatinga, Open Caatinga and Pastures. 

As show the reference (Luz et al., 2022), used 
high spatial resolution images of the RapidEye 
satellite to estimate the aboveground biomass of 
nine Caatinga areas and found a range of 6.88 to 
123.82 Mg ha-1, 50% of the plots varying from 
16.77 to 55.92 Mg ha-1.  

Presently, the RapidEye satellite offers the 
highest spatial resolution among satellites images 
for the Brazilian semiarid area (1.24 meters of 
resolution).  

According to Lima Junior et al. (2014), the 
large range of values observed in Caatinga areas 
reflects different edaphoclimatic characteristics, 
asymmetries in the vegetation growth rate, and 
anthropic interferences across the biome.  

Biomass stock estimates using data from 
orbital sensors commonly derive from the use of 
NDVI (Normalized Difference Vegetation 
Index) integrated with linear regressions. 
However, as show Nascimento (2015), observed 
that NDVI was not a good biomass estimator of 
Caatinga biomass, since he obtained an equation 
with an R2 of 0.38 for the same land covers used 
in the present study.  

Similar results were also reported by Accioly 
et al. (2022) who found a coefficient of 0.36 
correlating vegetation indexes of infrared 
spectrum and biomass of a Caatinga area in the 
Seridó region of Rio Grande do Norte state (also 
located in the semiarid region of NE Brazil). 

Contrarily, Lima-Junior et al. (2014) applied 
vegetation indices, using RGB and infrared 
reflectance data, in a single regression model to 
estimate the biomass stock of a Caatinga area and 
obtained a determination coefficient of 0.70.  

However, the data used to build the model were 

from only five sample sites, located only a few 
hundred meters apart, and, thus, do not reflect the 
climatic and physiographic diversity of the 
Caatinga biome and differs from the present 
study, which had sampling points distributed 
throughout the state, often separated by hundreds 
of kilometers. 

Even using high spatial resolution, prelimina-
ries studies warn that NDVI is not a good estimator 
of the aboveground biomass in the Caatinga biome. 
According to Morais et al. (2021), compared 
several spectral vegetation indices, including 
NDVI, to detect changes in land cover in the 
Caatinga and, concluded that the EVI and SAVI2 
indices were the most efficient in distinguishing 
the vegetation growth pattern, considering 
seasonality and variation in shrub density.  

Nascimento (2019) also identified that the 
isolate use of NDVI is not the most accurate 
vegetation index to estimate vegetation growth in 
the Caatinga. 

Baccini et al. (2012), compilated world 
biomass stocks and referred the Caatinga average 
biomass as being 44.5 ± 21.7 Mg ha-1, aan 
average similar to that estimated (40 Mg ha-1) by 
Sampaio & Costa (2011) and Sampaio (2010). 
According Sampaio (2010) reviewed biomass 
values in the literature for specific plots, under 
different climate and conservation states, and 
reported a range from 2 to 156 Mg ha-1. 

According to Barreto et al. (2018), generalistic 
predict models to estimate biomass stocks in 
native vegetations tend to have a low capacity to 
represent these environments' uniqueness. However, 
when these models are built contemplating the 
specificities of the ecosystem, they portray the 
real variability of these regions. The models 
obtained in our study were able to catch the 
heterogeneity of the Caatinga biome. 

Both satellite and UAV images can achieve 
adequate temporal and spatial resolution, while 
the UAV have a significant restriction in spectral 
resolution, since most commercial UAV carry 
only RBG cameras (Li et al., 2020).  

Vegetation indices using RGB images captured 
from UAVs have been used to monitor above-
ground biomass in grassland and cultivated pastures 
(Guo et al., 2021; Maimaitijiang et al., 2019).  

Grüner et al. (2019), for example, estimating 
cultivated pasture biomass with an SfM-based 
method and RGB image captured by a Phantom 
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3 quadricopter, found coefficients of determination 
from 0.59 to 0.81. These coefficients are inferior 
to those found in the present study, and we have 
to consider that they were obtained from a single 
experimental field. 

Oldeland et al. (2017) mapped savanna areas 
in central Namibia using images captured by an 
RGB-Nir sensor coupled to a fixed-wing drone. 
They concluded that the Nir spectrum in the 
UAV did not increase the capacity to determinate 
biomass stocks in the vegetation and that UAV 
with RGB cameras could adequately map the 
arboreal patterns in the ecosystem.  

They also concluded that the main reason for 
the success was the low altitude flights which 
allow the capture of patterns of the electro-
magnetic spectrum which would be impossible to 
be detected from orbital images. 

Used a drone equipped with RGB and NIR 
sensors in a maize field to compare the capacity 
of the sensors to estimate biomass and to monitor 
the vegetative stages of the crop (Marcial-Pablo 
et al., 2019).  

They used three vegetation indices based on 
the visible region and three based on the infrared 

region and concluded that a simple RGB sensor, 
depending on the purpose, can be more advanta-
geous, offering high precision to identify the 
vegetative stages with lower cost than NIR sensors, 
which were also used in their study. The results 
of the present research, based only on the visible 
spectral region, seem to support their conclusion. 

Drones coupled with RGB cameras may be an 
alternative to have fast, cheap, and representative 
estimates of vegetation biomass stocks in drylands 
(Chianucci et al., 2016), as demonstrated in our 
study. Such results diverge from those reported 
by authors who concluded that RGB images have 
limited ability to estimate the biomass of dry 
vegetations, because are highly sensitive to 
interferences from the soil reflectance (Doughty 
& Cavanaugh, 2019). 

Studies in the Brazilian semiarid region can be 
further developed using the biomass estimation 
models proposed in the present study. The 
models may provide information to support 
sustainable management plans and to help 
develop specialized and popularized tools to 
meet the specific needs of the local population in 
the face of severe drought problems.  

CONCLUSIONS 
The use of RGB cameras coupled to UAV and 

the integration of multiples vegetation indices in 
two estimating models, one considering three 
vegetation covers (Dense Caatinga; Open 
Caatinga; and Pasture) and the other only two 
vegetations covers (Dense + Open Caatinga; 
Pasture) proved to be a promising and 
advantageous method to estimate aboveground 
plant biomass in the native forest and in pastures 
established in the semiarid region of northeast 
Brazil.  

In this study the UAV flying 30 m high, 
offered a spatial resolution of less than 10 cm, 
advantage for analysis of small areas or when the 
purpose of the study requires high resolution of 
the area. The method used in our work differs 
from used in the most of studies and it is 
unprecedented for the biome, especially when it 
is considered the spatial variability of the 

sampled sites across the biome. 
The results obtained are quite satisfactory for 

an indirect method of this scale, involving the 
construction of two multiple linear regression 
models for different land use and cover types in 
caatinga areas, with determination coefficients of 
0.73 and 0.82. These models can be further 
improved by adding more sampling points, 
thereby reducing potential intrinsic analysis 
errors. The application of effective 
methodologies to estimate biomass in the 
caatinga is essential and necessary for 
developing future models for sustainable biome 
management and creating a spectral database to 
support future studies. 

This technique may be widely used in the 
management of forested and rangeland areas, due 
to its higher spatial resolution and lower cost than 
other types of remote sensors. 
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