Jorge Kazuo Yamamoto
Universidade de São Paulo USP, Instituto de Geociências
Rafael de Aguiar FURUIE
Petróleo Brasileiro S.A. / PETROBRAS
Palavras-chave:
distribuição lognormal, krigagem lognormal, krigagem da indicadora, efeito proporcional.
Resumo
Lognormal data are very difficult to handle because of its high variability due to the occurrence of a few high values. In
geostatistics the solution calls for a data transform, such as the logarithm transform and the indicator transform. Both approaches have
been used for estimating lognormal data. Lognormal kriging works on kriging the transformed data and then estimates are back-transformed
into the original scale of data. Indicator kriging builds a conditional cumulative distribution function at every unsampled location and
estimates are based on the conditional mean or E-type estimate. Usually back-transformed lognormal kriging estimates are mean biased
and conditional means from indicator kriging are unbiased. This paper compares both approaches for 27 data sets presenting distributions
with increasing positive skewness. Actually 27 exhaustive data sets have been computer generated from which stratified random samples
with 90 points were drawn. Estimates were first examined for local accuracy and the associated uncertainties were checked for the
proportional effect. Results show that lognormal kriging is still the best approach for lognormal data if we use an algorithm that takes into
consideration correcting the smoothing effect before back-transformation.
Keywords: lognormal distribution, lognormal kriging, indicator kriging, proportional effect.
Biografia do Autor
Rafael de Aguiar FURUIE, Petróleo Brasileiro S.A. / PETROBRAS
Possui graduação em Geologia pela Universidade Estadual de Campinas (2006) e mestrado em Geociências (Recursos Minerais e Hidrogeologia) pela Universidade de São Paulo (2009). Atualmente é geólogo jr - Petróleo Brasileiro. Tem experiência na área de Geociências, com ênfase em Geologia Regional, Mapeamento Geológico, Geoestatística e Geologia do Petróleo.