EVALUATION OF THE LINEAR MODEL TECHNIQUE OF SPECTRAL MIXING AS A SUBSID TO THE CLASSIFICATION OF LAND USE AND OCCUPATION

Evaluation of the linear model technique of spectral mixing as a subsid to the classification of land use and occupation

Authors

  • Fernanda Paula Bicalho PIO Universidade Federal de Minas Gerais https://orcid.org/0000-0002-0376-8600
  • Plinio da Costa TEMBA Universidade Federal de Minas Gerais
  • Marcelo Antonio NERO Universidade Federal de Minas Gerais
  • Marcos Antônio Timbó ELMIRO Universidade Federal de Minas Gerais
  • Eliane Maria VIEIRA Universidade Federal de Itajubá
  • Helder Lages JARDIM Universidade Federal de Minas Gerais

DOI:

https://doi.org/10.5016/geociencias.v42i4.17569

Abstract

The development of remote sensing technologies has encouraged the application of digital images in various circumstances, including environmental studies and Earth monitoring. For classification studies of land use and occupation, several classification techniques can be applied. These, however, vary depending on the characteristics of the imaging sensors and the purpose of the experiment. In image classification studies, it is common to encounter problems of spectral mixing that can be limiting, so working methods are used to extract information from images with greater detail, considering the properties of the materials present within a pixel and to help in classification techniques. This work approaches the linear model of spectral mixture as subsidy to the classification of land use and occupation. The results were compared with the classification performed from Sentinel 2-A satellite images. The overall accuracy for the ratings sourced from the Sentinel-2A and LMSM data was 65% and 62%, respectively, and the Kappa coefficient was 0.53 (satellite spectral data) and 0.62 (LMSM result) indicating that the quality of the two mappings can be considered as moderate, good enough or good.

Keywords: Spectral mixing. Linear spectral mixing model. Image classification. Sentinel-2A.

Author Biographies

Fernanda Paula Bicalho PIO, Universidade Federal de Minas Gerais

Graduated in Environmental Engineering from the Federal University of Itajubá (2019). She is currently an environmental control technician at the Municipality of Itabira-Municipal Environment Secretariat, an environmental consultant-Autonomous Service and is a Master's student in Analysis and Modeling of Environmental Systems at the Federal University of Minas Gerais (UFMG). She has experience in the field of environmental regularization, geoprocessing and remote sensing.

Plinio da Costa TEMBA, Universidade Federal de Minas Gerais

Universidade Federal de Minas Gerais

Instituto de Geociências

Laboratório de Geoprocessamento do Departamento de Cartografia 

Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte – MG.

Marcelo Antonio NERO, Universidade Federal de Minas Gerais

Universidade Federal de Minas Gerais. Instituto de Geociências.

Laboratório de Geoprocessamento do Departamento de Cartografia.

Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte – MG.

Marcos Antônio Timbó ELMIRO, Universidade Federal de Minas Gerais

Universidade Federal de Minas Gerais. Instituto de Geociências.

Laboratório de Geoprocessamento do Departamento de Cartografia.

Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte – MG.

Eliane Maria VIEIRA, Universidade Federal de Itajubá

Universidade Federal de Itajubá -

Instituto de Ciências Puras e Aplicadas.

Avenida B P S, 1303 - Pinheirinho, Itajubá – MG.

Helder Lages JARDIM, Universidade Federal de Minas Gerais

Universidade Federal de Minas Gerais. Instituto de Geociências.

Laboratório de Geoprocessamento do Departamento de Cartografia.

Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte – MG.

Published

2024-01-15

Issue

Section

Artigos