STRUCTURAL, STRATIGRAPHIC AND METALLOGENETIC ASPECTS OF THE PARAGUAY FOLD AND THRUST BELT: IMPLICATIONS FOR GOLD MINERALIZATION AND COLLAGE OF THE GONDWANA
Aspectos estruturais, estratigráficos e metalogenéticos do Cinturão de Dobramentos e de Cavalgamento Paraguai: implicações para a mineralização do ouro e colagem do Gondwana
DOI:
https://doi.org/10.5016/geociencias.v39i2.12699Resumen
ABSTRACT - Paraguay Belt occupies the western portion of the Tocantins Province, surrounding the Southeast of the Amazonian Craton and the eastern border of the Rio Apa Block, suggesting continuity with Tucavaca Belt in Bolivia. The rocks of the Paraguay belt were initially deposited in a glaciomarine environment in sites proximal to the cratonic area and deeper marine under the influence of turbidite flows in distal sites (Cuiabá Group, Bauxi and Puga Formation). The cap carbonates, thick limestone and dolostone succession of the Araras Group and siltstones and diamictites of the Serra Azul Formation related to Glaskiers glaciation overlay these diamictites (related to Marinoan glaciation). On the top there are terrigenous sediments of the Alto Paraguay Group, represented by sandstones of Raizama and claystones of Diamantino formations, respectively. The belt can be divided into three distinct structural zones: The Internal Domain is comprised of turbidite and glaciogenic sequences. Glaciogenic rocks on the base and carbonaceous and terrigenous sediments on the top occur in the External Domain. Horizontal platformal cover on the Amazonian Craton rocks are characterized by open folds. Structural studies allowed characterization of continuous deformational phases: the main deformational phase generated regional inverse folds with a NE-SW trend and fan geometry. Several regionally widespread lode-type gold deposits related to four types of the quartz veins were identified: type 1 is in concordance to bedding, type 2 is parallel to Sn, type 3 is parallel to Sn+2, and vertical Type 4 (Au-rich) is orthogonal to Sn. Late deformation developed in the Cuiabá region, recorded the closure of the ocean and the invertion where the hydrothermal fluids are the responsible for the orebodies formation.
Keywords: Paraguay Belt, Structural, Stratigraphy, Metalogenesis.